
JOURNAL OF 
PURE AND 
APPLIED ALGEBRA 

ELSWIER Journal of Pure and Applied Algebra 128 (1998) 233-249 

Split dual Dyer-Lashof operations 

Mark Foskey * 
Department of’ Mathematics, Jacksonville University, 2800 University Boulevard North, 

Jacksonville, FL 3221 I, USA 

Communicated by E.M. Friedlander; received 12 September 1996 
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geneous class x in H*(X), a Dyer-Lashof splitting &, determines a canonical element y in 
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1. Introduction 

Let X be a connected space and let !2”C”X be denoted X,,. In this paper we provide a 

way to name specific cohomology classes in H*(X,). We do this by defining functions 

0, from the tensor algebra Tfi*(X) to H*(X,), where the subscript I denotes an 

admissible sequence in a sense suitable for use with Dyer-Lashof operations. Naively, 

0,.x may be regarded as “the” dual to Q,?, where x E H*(X) is dual to X E H,(X). 
That is, we have the relation 

(Q,x, Q/i) = (x3). 

(Here and elsewhere, we identify H,(X) with a submodule of H*(X,) via the monomor- 

phism induced by the standard map q :X 4 X,.) 

The main theorem is as follows; some particulars of the notation will be explained 

below. 
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Theorem 1.1. For each admissible sequence I = (rl , . , . , r,) there is a natural function 

0, : TH*(X) --+ H*(X,), which satisfies the following properties: 

(1) If rl > 0 then 0, is a Z/p-module homomorphism. 

(2) We have the duality relation 

In (2), [ ,] denotes the (graded) commutator in Tf?,(C”-‘X), s”-’ is the isomor- 

phism that increases degrees by (n- l), and 6,~ is the Kronecker delta on the sequences 

I and J. We allow I (or J) to be the empty sequence (denoted 0), in which case Q1 

is taken to be the identity. 

The functions &, can be thought of as splittings of duals to Dyer-Lashof opera- 

tions, and we will refer to them as Dyer-Lashof splittings. They generalize the “dual 

extended Dyer-Lashof operations” defined by Kuhn et al. in [5], and by Foskey and 

Slack in [4]. These latter operations were not shown to be natural transformations, and 

they did not generate the entire cohomology of X,,. They were, however, sufficient to 

allow Slack in [7] to show that an infinite loop space with trivial Dyer-Lashof action 

must be (p-locally) homotopy equivalent to a product of Eilenberg-Mac Lane spaces, 

and in [8] to provide a similar classification of spaces with p-torsion free homology 

for p odd. 

All spaces in this paper will be connected, of the homotopy type of a CW-complex 

with finitely many cells in each dimension, and possessing a nondegenerate basepoint; 

and X will always denote an arbitrary space in this category. All coefficients for 

homology and cohomology will be in Z/p for p an odd prime, except in the final 

section where we will briefly discuss the case p = 2. The notation CX represents the 

reduced suspension, and Szx is the Moore loops on X. Finally, we will generally be 

working with functors from the category of spaces (as described above) to the category 

of h/p-modules. If we remark that a homomorphism is natural, we will mean that it 

is a natural transformation between two such functors. These transformations will not 

always be homomorphisms of graded modules, but they will preserve the property of 

being of finite type. 

2. Homology operations 

In this paper we will use the “lower notation” of Campbell et al. [2] for Dyer-Lashof 

operations. That is, if X E HJCX), i + q is even, and 0 5 i < n - 1, we define 

@(p-i) :Hq(@‘X) 4 Hpq+i(p-~)(fi”X) 

to be Q(‘+q)/*X, and we define Qi(p_i 1-1 to be /?Qi(p_l). 
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We use &I)(~-I) to represent the “top” operation, denoted &_I by Cohen in 

[ 11, which is special because it is not a homomorphism. Also, we use Q+ 1 )cp- I)_ 1 to 

represent the operation denoted in_, in [l]. This operation is not equal to PQ(n_t)(p_t ), 

but rather differs from it by a correction term involving Browder operations. However, 

in most respects it resembles the other operations of the form Qicp- I)- 1; in particular, 

it is a homomorphism. 

Now let I represent the sequence 

(il(P_ l>-E1,...,l4P-- 1)-E,), 

where cj is 0 or 1, and let Q[ represent the operation 

Qi,c,-I,-t:, . ..Qm-I)+.. 

The terms it (p - 1) - ~1 and i,Jp - 1) - E,~ will be called the leading and trailing terms 

of I, respectively, and we say that I is admissible if 

(1) 0 5 ij < i,+l - Ej+l for each j > 1, and 

(2) sj+r G ij+l - ij mod 2. 

This is equivalent to the standard definition in [l] for admissible sequences in upper 

notation, with the second condition added to ensure that QI is defined. We note that 

our notation is slightly different from that given in [2]. 

We conclude this section with two theorems that render into lower notation some 

standard useful facts about Dyer-Lashof operations. Proofs, in upper notation, may be 

found in [l]. 

Theorem 2.1 (Suspension relations). For any X, j E H*(PX), 

and 

- - 
a,L~(x,y)= &-2(cG,a*Y), 

where o, denotes the suspension homomorphism H,(QW) + H,+,( W). 

Theorem 2.2 (External Cartan formula). Zf X 18 J E H,( Q”X x L?” Y), then 

Qi+~)(f@ Y>= c Qrcp-I+@ Q.y(p-~)J 
r+s=i 

where we ignore all terms ,for which r + 1x1 or s + Ijl is odd 

The internal Cartan formula has essentially the same form, provided that i < n - 1. 

For the i = n - 1 case, see [l]. 
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3. The homology of loop-suspension spaces 

We will rely on Cohen’s structure theorem for H*(X,) [l, III]. In this section we 

restate that theorem in the notation of this paper. 

Let TM denote the tensor algebra on a graded module M, and define the free Lie 

algebra LM to be the sub Lie algebra of TM generated by A4. That is, we can induc- 

tively define a generating set A for LA4 by saying that A4 c A, and the commutator 

[a, b] E A whenever a and b are both in A. 

If S is some arbitrary subset of (TM),,,,, define (S to be the submodule of TM 

generated by the set {tu 1 a E S}, where 5 is the pth power map la=a@C We may 

then define the free graded restricted Lie algebra LRM to be the submodule 

LM + 5LM,,,, + t2LMe,en + . . . c TM. 

It is an infinite sum rather than an infinite direct sum because the pth power map is 

not a homomorphism on a non-commutative ring. One may show that LRM, defined 

this way, is still closed under the Lie bracket operation. 

The notion of LRM is useful because H*(X,) contains a degree-shifted copy of 

LRH,(C”-~X), which we will call S,. To see this, let c? denote the composition 

H+(X,,) = H,(fi2”C”x) (5 H,(s2C”X) g TI?,(C”-‘X), 

and let ~9’~~~ . . LRH,(C”-‘X) --+ H*(WPX) be determined by the following formal pro- 

cedure: replace every [, ] by An-,(, ), every t by Q+_I)~~_~), and every s”-‘2 E 

H,(C”-‘X) by r,(X) E H,(X,). For example, 

~split(52[Sn-1X,,Sn-l - 
x~I)=Q(~-I,(,-I,Q(~-I,(,-I,~~~-I(~*(~I),~*(X~)), 

It follows from [l] that (T Mit is a well-defined homomorphism, and the suspension rela- 

tions, coupled with the fact that Qs is the pth power and As is the graded commutator, 

show that &9”it = id. Define S, c H,(X,) to be the image of P’it. We see that S, is 

an isomorphic copy of LRI?*(C”-‘X), except that degrees have been lowered by n - 1. 

If I is an admissible sequence with trailing term i(p - 1) - E, let d(Z) denote the set 

of nonnegative integers congruent to i mod 2. Then we may speak, for instance, of Q, 

acting on &(I). If I is the empty sequence, then let &(I) be the set of all nonnegative 

integers. Using this notation, define M,(X,), for n > 1, to be $ Q[&([), with the direct 

sum taken over all admissible sequences I with leading term nonzero and trailing term 

not greater than (n - 1 )(p - 1) - 1. Sequences meeting this criterion (including the 

empty sequence) will be referred to as simple. 

We now state, in the notation of this section, Cohen’s structure theorem: 

Theorem 3.1. Let n > 1. For any admissible sequence I with trailing term less 

thun (n - l)( p - 1 ), the restriction of Q, to &(,) is a monomorphism. As u Hopf 

ulgebra, H,(X,,) is isomorphic to the j’iee commutative algebra generated by 
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a*(~,,) = I&(,&) n fi*(X,), with the coalgebra structure determined by the Cartun 

fkmulas for the Dyer-Lashof and Browder operations. 

In the definition of M,(X,), the leading term must be nonzero because QO is the 

pth power on homology, and so Q,i is not a generator if I has leading term zero. 

On the other hand, the trailing term must be no more than (n - 1 )(p - 1) - 1 because 

Q’,,_ I jcp- I ,X is already accounted for as the class ~7’~‘~~ 5sn-‘.?, and Qr is undefined on 

H,(X,) for y > (n - l)(p - 1). 

In the case that n= 1 we may define A&(X,) as gJf,(X), so that IV*(&) will still 

be naturally isomorphic to QH*(X,). 

4. Defining the Dyer-Lashof splittings 

In defining Q,, we will consider three cases of increasing generality: I simple, 

I with trailing term (n - 1)( p - 1) (but leading term nonzero), and I with leading term 

zero. In all but the last case, n will be assumed greater than 1. 

Case 1: I simple. In this case, Q, will be the dual of a homomorphism H*(X,) * 

T/&(X), relying on the fact that, as a module, (T&(X))* is naturally isomorphic to 

rI?*(X). Recall from Theorem 3.1 that M*(X,) is defined to be the direct sum 

with each Q, a monomorphism. Thus, for each simple I there is a splitting Qsplit : 

M,(X,) + Sdclj and we can construct the following composition: 

>‘A,, 
Q, 

We define Q, to be the dual homomorphism to this composition. Note that Ts’-“, the 

result of applying the tensor algebra functor to the isomorphism .r’-’ : f?*(Cn-‘X) + 

ti,_,+l(X), is a ring isomorphism, but not a morphism of graded objects. 

Case 2: Trailing term (n - 1 )(p - 1). For any k, let Z(k, t) equal k iterated t times. 

Let k = (n - 1 )( p - 1 ), let J be a simple sequence, and assume that the concatenation 

JZ(k,t) is admissible. Our goal is to define QJ,(k,t’. The difficulty in this case is that, 

as we noted earlier, the top homology operation Q+’ ‘cP_” is not a homomorphism 

and thus has no obvious splitting. We work around this problem by observing that the 

composition 

(L/#*(c”-‘X)),,,, 4 LRH*(C”-‘X) 

* LR~*(C’1_‘X)/LH*(C”_‘X) 
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is a homomorphism since the deviation from linearity of 5 is contained in LH,(C”-‘X) 

(see, for instance, [I, III]). It follows from the Poincare-Birkhoff-Witt theorem (see [6]) 

that 

4’ : (LH*(,r’X)),,,” 4 LRH*(c”-‘x>/~~*(~“-‘x) 

is a monomorphism for all i > 1, and so 

LRH*(c”-‘x)/LH*(c”-‘x) = CJj <‘(LH*(C”-‘X)),“,“. 
i>O 

Thus for each i we have 

(S’)@ :LRH*(c”-‘X)/~H*(C”_‘X) --+ (LH*(C”-‘X)),,,, 

which amounts to projection on the ith summand on the above direct sum splitting. 

Given J and I(k,t), we define i)J,Ck,t’ to be the dual of the following composition of 

homomorphisms: 

spl,t 
9, - - 

H*(x!)-M*(Z) -G(J) 5 LRH*(C “-9) 

* LRH*(C”_‘X)/LH*(C”_‘X) (2 (LH*(C”%Y)),,,, 

q TH*(c”-‘X) Ts’-” z%*(X). 

The reader should note that im &,CkSr’ c im &. Thus, the definition of & in the case 

of trailing term (n - 1 )( p - 1) is not necessary to define the set e(X) of Theorem 1.1. 

However, as a way of labelling individual generators, this case is useful. In particular, 

the applications that have appeared [4, 7, 81 have used a variant of Q(,-I”,-’ ‘. 

Case 3: Leading term zero. The difficulty with defining 0, in this case lies in the 

fact that QO is the pth power on homology. Thus, for instance, 0,~ for x primitive 

should be a divided power y+, characterized by the property that 

&,x= c &xi @xx’. 
i+j=p 
i,j > 0 

In general this property does not uniquely determine llpx, since the addition of a prim- 

itive does not change the reduced coproduct. However, in the special case of H*(X,), 

we can make the following inductive definition: 

Let x be an element of ,‘“‘“(X,) for n > 1. If k <2, then let y,+x = xk. If k > 2 then 

let ykx be an element y determined by the conditions 

(I) d_Y = C YiX @J 2x9 
i+j=k 
i,j>O 

(2) (y,Z) =0 for any iiEM,(X,). 

Proposition 4.1. The class y, as dejned above, exists and is unique. 
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Proof. For both existence and uniqueness the proof is by induction, assuming that 

%x is already known to be well-defined for j <k. We note that there is no difficulty 

when k = 0. We first prove existence. Let the subspace of HIXI(X,) spanned by x be 

denoted (x), and write PH*(X,) as (x) @C*, where C’ is graded, with Cl11 some 

complementary subspace to (x) in PHl’l(X,,). This splitting determines a dual split- 

ting M*(X,) E (2) @ C,, using the natural isomorphism M,(X,) E QH*(X,,). By Theo- 

rem 3.1, it follows that 

with D spanned by products of the form ni Wi, where each Wi is in M,(X,), and at 

least one factor W; is in C,. Then y is determined by 

(y,Xk) = 1; (v,D) =a 

By construction, (y, 5) = 0 for a E M,(X,), and a simple calculation using the inductive 

hypothesis shows that y has the appropriate reduced coproduct. 

To prove uniqueness, suppose yi and y2 satisfy the definition of y. Then, since yi 

and y2 have the same reduced coproduct, yi - y2 must be primitive. Choose J E H*(X,, ) 
such that (yi - y2,jj) # 0. Then, since yi - y2 is primitive, the class [j] E QH*(X,) must 

be nonzero. Hence we can write j = j’ + d where J’ E M*(X,,) and d is decomposable. 

But, since yl and y2 were assumed to satisfy the definition of y, they must annihilate 

elements of M*(X,). Hence (yi, y’) = (~2, 3’) = 0. And, because yl - y2 is primitive, 

(YI - ~2,4==. H ence (yi - ~2, 7) = 0, a contradiction. 0 

Now let J be a sequence with leading term nonzero such that the concatenation 

/(O, t)J is admissible. For compactness of notation, let x denote an element of TH*(X). 

If n > 1 then we define Q ,(o,r)J~ to be y&x, bearing in mind that the definition of 

&x ensures that it is primitive. 

If n = 1, then we take Ql(o,rjx to be the image of x@P’ under the isomorphism of 

coalgebras TH*(X) -+ H*(Xi ). 

5. Properties of the Dyer-Lashof splittings 

The following theorem and its corollary restate all but part 3 of the properties given 

in Theorem 1.1. 

Theorem 5.1. For I, J admissible, x E TH*(X), and X E S c H,(X,,), 

A 
(Q,x, QJj;_) = ~3~~ (x, Ts’-“6X). 

If I has leading term nonzero, then 0, is a natural transformation offunctors TI?,(.) 

to H,(R”C”~). Otherwise, 0, is a natural transformation of functors YT&(,) to 

YH~(s2”.Y’~), where Y is the forgetful functor from the category of B/p-modules to 

the category of sets. 
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Corollary 5.2. For I, J admissible, xi E H*(X), and Xi E H,(X) + H,(X,), 

@,(x1 ,...,&?I), QJn,-l(~I,...,n,-,(X,-1,X,)...)) 

= 811 (s n-lx, @ . . . cg d--1x,, [d-5,, . . .) [,r’i?,_,,.s”-‘&J . . .I). 

Proof of Theorem 5.1. The duality relation follows directly from the definition. If I has 

leading term nonzero, then 8, is the dual of a composition of natural transformations, 

and hence natural. For the case of I with leading term zero, we will in fact show that 

the following diagram commutes for any k and any map f:X + Y: 

p,wal(yn) ca”z~l-)* - PHeven(x,) 

;‘r ! I‘n 

H*(Yn) 
(Q”Z”f)’ 

- H*(K) 

The proof will be by induction. In the case k = 0, commutativity is clear. For k > 0, 
we will show that ( O”Cnf)*yky satisfies the two defining properties of yk(Q”C”f)* y. 

(1) By the naturality of the reduced coproduct and of lj for j < k, 

i+j=k 

i,,j > 0 

(2) For any firm, 

because, by the naturality of the Dyer-Lashof operations with respect to n-fold loop 

maps, (Q",Yf )*a must be an element of M,(Y,). Thus yk is natural for all k, and 

hence 0, is natural. q 

Although 0, is not a homomorphism if I has leading term zero, it behaves reasonably 

well with respect to the module structure of H*(X,). It is easiest to state the results 

in terms of Yk: 

Proposition 5.3. For any integer k 2 0, and any XI ,x2 E PHeven(X,,), 

= YkXl f ykx2 $- c (yixl)b~x2)9 

i+j=k 

i..i#O 

and, for any C E E/p, YkCX = Cykx. 
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Proof. We prove the addition formula by induction. The result is trivial when k = 0. 
Using the inductive hypothesis, a direct calculation shows that both sides of the equa- 

tion have the same reduced coproduct. It remains to show that 

( 
c (XXI l(lljX2h 5 = 0 

i+j=k ) 

for any GEM,(&). But it follows from the Cartan formula (Theorem 2.2) that the 

coproduct map takes M,(X,,) to M+(X,) @n/r,(&). Thus 

((791 Nyjx2 13 4 = (Yixl @ %X2, Aa) = Cl 

since (yixt) annihilates elements of M,(X,). 

The fact that ykcX=cYkX follows easily by a similar method. 0 

Corollary 5.4. rf 7-c denotes the projection H*(X,) -+ QH*(X,), then 

nyk : pffeve” (& ) + @feve” (x, ) 

is a homomorphism, nontrivial when k = pt. 

We now prove part (3) of Theorem 1.1. 

Theorem 5.5. The projection TC maps e(X) surjectivefy onto QH*(X,,). 

Proof. The theorem is true (but not helpful) when n = 1 because e(X) =H,(!XLY). 

For the rest of the proof, let n be greater than 1, making H,(X,, ) commutative as well 

as associative. Assume there exists a class [a] E QH*(X,) such that [a] $X&X). We 

can then choose 2 EPH,(X,) such that ([a],Z) = 1 but (x,ii) = 0 for any x E e(X). 

Since ii is primitive, it must be either indecomposable or a pth power. 

If ii is indecomposable, it can be written as 

for J simple, at least one ii_, E &(JJ nonzero, and 2 decomposable. For some K such that 

?iK #O, choose bE TH*(X) such that (b, Ts’-~&?~) #O. By Theorem 5.1, it follows 

that (&b, QK&) # 0 and that, for J #K, 

Hence (&b,E) # 0 even though &b E o(X), a contradiction. 

If ii: is a pth power, it must be a pth power of a primitive. By induction, ii must be 

of the form (ii’)J” for some t, where ii’ is indecomposable. Choosing b’ with regard 

to 6’ just as b was chosen with regard to ii, we know that @,b’, ii’) # 0 for some 

appropriate sequence K. Then, since ii = (G’)P’, 

(~pp’&b’, 4 # 0. 

Again, this is a contradiction because llp,oKb’ = Q,(o,t)K E e(X). 0 
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Unfortunately, the restriction of rt to Q(X) is not injective. However, it is not hard 

to see that any class Q,+v E Q(X) is either indecomposable or a pth power. Thus 

the next theorem, which tells how the pth power map relates to the Dyer-Lashof 

splittings, makes it possible to determine in individual cases whether an element of 

Q(X) determines a generator. 

Let the pth power map on cohomology be denoted i, to distinguish it from the 

restriction 5 on homology. Extend [ on I’?*(X) to T/?*(X) by defining it to be zero on 

R*(X)@‘” form>l. IfI=(ii(p-1) ,...,i,Y(p-l))andpiS<n-l thenletpI=(pii(p- 

1 ), . . . , pi,(p - 1)) and, conversely, define I/p to be J if I can be written as pJ. We 

adopt the convention that QPl, QjiP, QP,, and Ql,P are all the zero homomorphism if 

their respective indexing sequences are undefined. For instance, QPl = 0 if QI contains 

a nontrivial Bockstein or pis > n - 1. 

Theorem 5.6. For w E T/?*(X), i&w = o,,iw. 

Proof. First, we observe that [ commutes with Yk for any k. To see this, note that 

iYkX must have the correct coproduct since [ is a morphism of Hopf algebras, and that 

[YkX annihilates M+(X,,) since [* takes M,(X,) to itself. Therefore our theorem will 

hold in genera1 provided that it is true when I has leading term nonzero. We may thus 

assume that Z has leading term nonzero for the rest of the proof. 

With this assumption it will suffice to show that 

for all ii E H,(X,). If we allow I to represent either a sequence or a potentially unde- 

fined “sequence” of the form pJ for some J then, by the definition of Qr, 

{ 

I n split 

(Q,)* = ~lln$+it~~Qdit 

(I simple) 

K n (I has trailing term (n - 1 )(p - 1)) 

0 (I undefined) 

where rc is the projection H*(X,) + M,(X,), and C$ is the projection 

LRH*(c”-ix> -++ LR~*(Cn-‘X)/Ld*(C”_‘X). 

Our strategy will be to independently evaluate both sides of the equation ([&,),a = 

(Q,~)*Z using each of the three cases in the above formula for (Q,)*. To do this we 

need to write an arbitrary ii in an appropriate form. We begin by writing 

ii= c Q&+2 
J simple 

as in the proof of Theorem 5.5. Because 

S*/(BP”‘LH*(C”_‘X)) 2 LR~*(c”-‘X)/LH*(C”_‘X) 

g@ r’(L~*(c”-‘.V),,,,, 
t>o 
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the class of ii/ in S,/(ii sp’itLJ?*(Cn-‘X)) may be written uniquely as 

[&I = [Q~c/c.~,iiJ.~l+ [Q1(/c.2+i/,21+ . . , 

where k = (n - I)(p - 1) and each &E @tLH+(Cn-‘X). If 

‘$0 = iiJ - CQ I(k,s)&,.s 
s > 0 

then 

iiJ = c Q~(k,s)iiJ,s 
s>o _ 

and each iiJS E +“it(LH*(Cn-‘X)). We thus have the (unique) decomposition 

It will be useful to further decompose each EJ,t. Because 

iiJ,[ E aSp”‘LH*(C”-‘X), 

we may write 

for some 6~~ E H,(X) and CJ,,i, F:,t,i E H*(X,). Here by,, is uniquely determined by zi,,,,, 

but C_/,f,i and <:,,, are not. If I has the form JZ(k,t), then let 6, denote by,,. If I is 

undefined, let b, = 0. We will show that 

(iC?,)*Z = (Q,,i)*li = CC*&,. 

First we will show that (CQ, )*a = c,b,,. If I is simple we have 

Wellington [9] has proven the general formula [*Q$ = Q1,&Z. If we let pl = Kl(k, t), 
where t may be 0, then we can write I = (K/p)I(k/p, t), where I(k/p, 0) is the empty 

sequence. Then 

fi’-“~Q;p”‘i* c QJQw,sv%,s = T~‘-n~Q;;;p~,~k,p~r~ c QJ/pQl(k/p,s,i&..~ 
J simple 

Sk0 
J simple 

s>o _ 

= Ts’-“c&i&,. 
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By [9], [* annihilates classes in the image of the Browder operation AR- 1, provided 
n>O. Thus 

and, since &K, t = &,l, 

Ts’-“&igt = Ts’-“cQ,bP1 = Ts’-“&&~~ = T&Y’[& = [& 

Thus, if I is simple, (~~,)+E=&&. 
If f has trailing term (n - l)(p- l), then PI is undefined, so proving that ([&)*iI = 

&&,f amounts to proving that (<&),a =O. Let I =ZU(k,t). Then 

,I-“(g”)SP”t~~Q”P”t~i 
K * ( J,g,e eJ&k&J,s + ‘j 

= ~~1 -fi(tf plit(;b~g$it 
i J.g,e .._,m&kj . 

But observe that, for any J and S, the sequence (J/p)~(kjp,s) is, if defined, simple. If 
K # (~/~)~(~/~,~~~ for any J or s, then 

Q?lil ( Jg,e Q.v&ck,w,i*%s j = 0. 

If K = (L/p)I(k/p, t) for some L and t, then 

because c?&& E LI!?+(~“-‘X). 
If I is undefined, then 0, is the zero homomorphism, so 

This completes our evaluation of the left-hand side of the equation (5d1)*Z = 
(&&,G; now we must show that (&[)*Z= C&j. If pZ is simple, 
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Since [* annihilates tensor algebra decomposables in Tfi*(Cn-‘X), 

is Ts’-” c 5”Ca,,, = i&,.o = i,& 
S)O 

noting that the concatenation (pZ)Z(k, 0) is the same as the sequence PI. 

Now assume that pl has trailing term (n - l)( p - 1). By the isomorphism 

LRH*(c”-‘X)/LH*(C”_‘X) = @ [‘(LH*(z”-1X)),,,,, 
t>o 

observe that C#J C,2o <“X, = Es,0 {“Xs. Using this fact, 

As with the case of pI simple, 

<,Ts’-‘%&, = <+b,,l. 

Finally, if pl is undefined then (&[),a=O= 4’*bp,. 0 

We use similar techniques to prove our concluding theorem, which relates the sus- 

pension homomorphism C* : H*(PC”+‘X) +H*-‘(Pf’C”+‘X) to the Dyer-Lashof 

splittings. We have been allowing s to represent both the isomorphisms H,(X) -+ 

f?*+’ (XX) and R*(X) + fi*+‘(XY). Under this convention, the dual homomorphism 

to s is 3-I. 

Theorem 5.7. Zf Z=(i’(p - 1) -cl ,..., is(p - 1) -E,), then 

L 
G* 0, Tsw = Q,c+, , w, 

whew I(+‘)=((i’+ l)(p- I)-cl,...,(is+ l)(p- 1)-c,). 

Proof. When I is simple or has trailing term (n - l)(p - l), the proof is similar to 

that of Theorem 5.6. It is useful to write 

(CT,)“-’ : H+(X,) + TI%(C”-‘X) 
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for 5. Then, when Z is simple, we must prove 

Notice that on the right-hand side of the equation we are working with 52”+’ P’X, so 

we must replace n by II + 1 in the composition of functions we use to define &+, , . We 

will again write a = CJ simple QJ&+~: Also, if Z=(i’(p- 1)-s’,..., is(p- I)-c,~), 

then we will write I(-” for ((i’ - l)(p - 1) - &I,...,(& - l)(p - 1) - 6,). If Z has 

leading term 0, then Ql,-l, = 0. Then 

(Ts-i)Tsi-tt(o )n-IQ@ 
+ I no* (Jz,e QJ~J+~) 

= T~-“@,)“-‘Q;~‘~~ c QJt-~)b,i~ 

.J simple 

= Ts-“(o*)“ci,c+l,, 

while 

This completes the proof in the case that Z is simple. 

If I has trailing term (n - 1 )(p - 1) then we write a as in the proof of 

Theorem 5.6 and I as KZ((n - l)(p - l), t), and we must show that 

(,-‘)Ts’-“(S’)Sp’i’~(a*)“-‘Qs;p’itno*a= Ts-“(i;‘)sp’i’~(a,,“Q~~~,,~~. 

A calculation similar to the previous ones shows that both sides of the equation are 

equal to T~P(a*)nci~~+~~~~. 

The leading-term-zero case is more complicated. If Z =Z(O,t).Z, then I(+‘) = 

Z(p - 1, t)J(f’), and we are trying to show that 

~*y,,&~Tsw= &,+,,w. 

We will prove that 

for all 5 E H*(X,+, ). Again we consider each side of the equation separately, proving 

that both sides are equal to (Q JCi,,w, at). With regard to the left-hand side, 

(a*y,~i)~Tsw,G) = (yp$jJTsw,a,G). 

Since o* annihilates decomposables, we can assume that a E M*(X,+’ ). By the defini- 

tions of IV,(.) and of admissible sequences, we can write 

E = Q,-$’ + c QI(,-~,i,& 
i>O 
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where a’,& E M*(Xn+r ) have the property that Q,_$i’ and Q~(p-rqi)Gi are also in 

M,(X,,+, ). Thus by Theorem 2.1, 

a*;= C QI(O,i)~*~i= C(o*4)"'3 

i>O i>O 

noting that rr* Q,-25’ = fl( a$‘)” = 0. 

We will defer the proof of the following lemma to the end of this section: 

Lemma 5.8. [fz E PH*(WC”+‘X), and bi EM,(Q”C”-‘X) ,fbr all i, then 

(7rz,x6jr) = (Z&. 

By the lemma, since i),Ts:rw is primitive and each a*Ci is in M,(L?“C”+‘X), we 

have 

Using the theorem in the case of J simple, we know that 

and so (~~~&Tsw,cr,G) = (&C+,,w,6t), as we wanted. 

To finish the proof we must show that (0 I,+I,w,C) = (&+,,w,Ct). By definition, 

(&,+,,w,E) = (w, F(o*)“@~‘I:7ca). Because we are already assuming that 5 E 

M,(P+' C”+‘X), we can disregard the homomorphism 7c, and, since I(+‘) = 

I(p - l,t)J(f”, 

edit a = Qj$ Qp-25’ + C Q/(p-l,i)G 
split split - 

fItI1 = Q,~,QI(,-I.I,~, = QJc+uac 

i>O 

Thus 

(w, Ts-“(c~,)“Q;~$ui) = (w, W"(CT,)"Q~~;JG~) = (i),,+,,w,G,) 

and so, finally, (&+l,w,G) = (&+,,w,&) as desired. 

Proof of Lemma 5.8. We calculate: 

Here we let j, denote the Pontryagin product restricted to reduced homology, so 

that its dual homomorphism is the reduced coproduct. Using our definition of 7,, one 
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can compute that 

((y _ )@‘p’ ,@pl @ r.2 ) i )=O (i<t) 

((d@l@~‘-2)~&i@ l)&+z,b”P’)= (+J’,@@)+j,) (i=t) 

(0, b”P’) = 0 (i>l) 

The result follows. 0 

6. Variants 

There are a number of other circumstances under which analogous results apply. In 

this section we briefly sketch the relevant differences. 

First we consider the prime 2. When p = 2, the Dyer-Lashof operations in lower 

notation take the form 

Qi : Hq(Q”X) + H2y+i(QnX), 

where q is arbitrary. A sequence I = (il , . . . , i,) is admissible provided that 0 < ij < G+i 

for all j, and simple if il> 0 and i, <n - 1. Cohen’s structure theorem differs only in 

that M,(X,) is defined to be @ QI&, where the sum ranges over all simple I. We 

need not use &(I), since QI can act on elements in any degree. With these changes in 

the setup, the definitions of the Q,, and the proofs of their properties, go exactly as in 

the odd primary case. 

At both odd primes and the prime 2, it is easy to see that the definition of Q, 

can be carried over to the infinite loop space QX = lim Q”C”X. The structure the- 

orem for H,( QX) again takes the same form as the theorem for H,( PY’X), ex- 

cept that M,(QX) is defined to be @Q,?*&,)(X) (or, if p= 2, $ Qlr],fi,(X)), 

where Z ranges over all admissible sequences with leading term nonzero. Since there 

are no nontrivial Browder operations in H,(QX), the subspace S, does not 

appear, and the Dyer-Lashof splittings Q, are defined on H*(X) rather than 

on TH*(X). 

Finally, we note that all of our results apply without change to the Milgram-May 

combinatorial models CX and C,X, for QX and C”PX, respectively. 
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